Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Shock ; 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38661185

RESUMO

ABSTRACT: Hypermetabolic reprogramming triggered by thermal injury causes substantial morbidity and mortality. Despite the therapeutic potential of targeting this response, the underlying mechanisms remain poorly understood. Interestingly, protein S-acylation is a reversible post-translational modification induced by metabolic alterations via DHHC acyltransferases. While this modification aids in the regulation of cellular functions, deregulated S-acylation contributes to various diseases by altering protein structure, stability, and localization. However, whether and how S-acylation may impact morbidity and mortality during post-burn hypermetabolism is unknown. In this study, we discovered that alterations in the acyl proteome play a key role in mediating adverse outcomes that occur after burn injury. Using a murine model, we show that burn injury induces profound changes in the expression of various DHHC isoforms in metabolic organs central to regulating post-burn hypermetabolism, the adipose tissue and liver. This was accompanied by increased levels of S-acylated proteins in several pathways involved in mediating the adverse hypermetabolic response, including ER stress, lipolysis, and browning. In fact, similar results were also observed in adipose tissue from severely burned patients, as reflected by increased S-acylation of ERK1/2, eIF2a, ATGL, FGF21, and UCP1 relative to non-burn controls. Importantly, pharmacologically targeting this post-translational modification using a non-selective DHHC inhibitor effectively attenuated burn-induced ER stress, lipolysis, and browning induction in an ex vivo explant model. Together, these findings suggest that S-acylation may facilitate the protein activation profile that drives burn-induced hypermetabolism and that targeting it could potentially be an effective strategy to restore metabolic function and improve outcomes after injury.

2.
Cell Rep ; 43(1): 113584, 2024 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-38117653

RESUMO

Severe burns induce a chronic hypermetabolic state that persists well past wound closure, indicating that additional internal mechanisms must be involved. Adipose tissue is suggested to be a central regulator in perpetuating hypermetabolism, although this has not been directly tested. Here, we show that thermogenic adipose tissues are activated in parallel to increases in hypermetabolism independent of cold stress. Using an adipose tissue transplantation model, we discover that burn-derived subcutaneous white adipose tissue alone is sufficient to invoke a hypermetabolic response in a healthy recipient mouse. Concomitantly, transplantation of healthy adipose tissue alleviates metabolic dysfunction in a burn recipient. We further show that the nicotinic acetylcholine receptor signaling pathway may mediate an immune-adipose crosstalk to regulate adipose tissue remodeling post-injury. Targeting this pathway could lead to innovative therapeutic interventions to counteract hypermetabolic pathologies.


Assuntos
Queimaduras , Gordura Subcutânea , Animais , Camundongos , Gordura Subcutânea/metabolismo , Tecido Adiposo Branco/metabolismo , Obesidade/metabolismo , Metabolismo Energético/fisiologia , Queimaduras/metabolismo , Tecido Adiposo Marrom/metabolismo , Tecido Adiposo/metabolismo
4.
Am J Physiol Endocrinol Metab ; 325(3): E180-E191, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37406182

RESUMO

High levels of plasma lactate are associated with increased mortality in critically injured patients, including those with severe burns. Although lactate has long been considered a waste product of glycolysis, it was recently revealed that it acts as a potent inducer of white adipose tissue (WAT) browning, a response implicated in mediating postburn cachexia, hepatic steatosis, and sustained hypermetabolism. Despite the clinical presentation of hyperlactatemia and browning in burns, whether these two pathological responses are linked is currently unknown. Here, we report that elevated lactate plays a causal signaling role in mediating adverse outcomes after burn trauma by directly promoting WAT browning. Using WAT obtained from human burn patients and mouse models of thermal injury, we show that the induction of postburn browning is positively correlated with a shift toward lactate import and metabolism. Furthermore, daily administration of l-lactate is sufficient to augment burn-induced mortality and weight loss in vivo. At the organ level, increased lactate transport amplified the thermogenic activation of WAT and its associated wasting, thereby driving postburn hepatic lipotoxicity and dysfunction. Mechanistically, the thermogenic effects of lactate appeared to result from increased import through MCT transporters, which in turn increased intracellular redox pressure, [NADH/NAD+], and expression of the batokine, FGF21. In fact, pharmacological inhibition of MCT-mediated lactate uptake attenuated browning and improved hepatic function in mice after injury. Collectively, our findings identify a signaling role for lactate that impacts multiple aspects of postburn hypermetabolism, necessitating further investigation of this multifaceted metabolite in trauma and critical illness.NEW & NOTEWORTHY To our knowledge, this study was the first to investigate the role of lactate signaling in mediating white adipose tissue browning after burn trauma. We show that the induction of browning in both human burn patients and mice is positively correlated with a shift toward lactate import and metabolism. Daily l-lactate administration augments burn-induced mortality, browning, and hepatic lipotoxicity in vivo, whereas pharmacologically targeting lactate transport alleviates burn-induced browning and improves liver dysfunction after injury.


Assuntos
Queimaduras , Ácido Láctico , Humanos , Animais , Camundongos , Ácido Láctico/metabolismo , Tecido Adiposo Branco/metabolismo , Queimaduras/metabolismo , Caquexia/metabolismo , Transporte Biológico , Tecido Adiposo Marrom/metabolismo
5.
Ann Surg ; 278(6): e1267-e1276, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37057618

RESUMO

OBJECTIVE: We conducted a large-scale investigation of the systemic and adipose tissue-specific alterations in a clinical population of burn patients to identify factors that may influence hypermetabolism. BACKGROUND: Previous research has identified chronic disturbances in adipose tissue inflammation, lipolysis, and browning, which may drive the perpetuation of hypermetabolism following the severe adrenergic stress of a burn injury. Given that adipose tissue is thought to be a central node in the regulation of systemic metabolism, we believe that systematically delineating the pathologic role of adipose tissue postburn, will lead to the identification of novel interventions to mitigate morbidity and mortality from severe burns. METHODS: This was a single-institution cohort study, which obtained plasma and subcutaneous adipose tissue samples from severely burn adult patients over various time points during acute hospitalization. Whole-body clinical, metabolic, and inflammatory mediators were assessed in plasma, while genetic analyses through RT-qPCR and single-nuclei RNA sequencing were conducted in adipose tissue. RESULTS: Systemic inflammation and adrenergic stress increase IL-6 signaling, lipolysis, browning, and adipokine dysfunction in the adipose tissue of adult burn patients, which may further propagate the long-term hypermetabolic response. Moreover, using single-nuclei RNA sequencing, we provide the first comprehensive characterization of alterations in the adipose tissue microenvironment occurring at acute and chronic stages postburn. CONCLUSION: We provide novel insight toward the effect of burns on adipokine release, inflammatory signaling pathways, and adipose heterogeneity over the trajectory of acute and chronic stages.


Assuntos
Queimaduras , RNA , Adulto , Humanos , Adipocinas , Estudos de Coortes , Tecido Adiposo , Queimaduras/metabolismo , Inflamação/metabolismo , Adrenérgicos
6.
Shock ; 58(2): 103-110, 2022 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-35953463

RESUMO

ABSTRACT: Sepsis has become the leading cause of death in burn patients. Furthermore, sepsis and septic complications result in significant morbidities and longer hospitalization, which has profound impacts on the healthcare system. Despite this, sepsis in burn patients is surprisingly poorly understood and characterized. This retrospective, single-institution cohort study aimed to increase our understanding of the septic response after burns. We hypothesized that different sepsis definitions will results in distinctive septic trajectories and biochemical patterns after injury. Sepsis was defined by our burn center-specific prospective definition, the American Burn Association criteria, Sepsis-3 criteria, and the Mann-Salinas criteria. Applying these definitions, we compared clinical, metabolic, and inflammatory markers in septic and nonseptic burn patients. We found that the Sepsis-3 criteria are the most reliable screening tool used before clinical diagnoses for detecting sepsis trajectories and biochemical patterns. Moreover, we characterized distinct temporal alterations in biomarkers during the pre- and post-septic periods in burn patients, which may be incorporated into future sepsis definitions to improve the accuracy of a sepsis diagnosis in burn patients.


Assuntos
Sepse , Biomarcadores , Estudos de Coortes , Humanos , Estudos Prospectivos , Estudos Retrospectivos , Sepse/metabolismo
7.
Clin Transl Med ; 11(6): e417, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34185433

RESUMO

Hypermetabolism following severe burn injuries is associated with adipocyte dysfunction, elevated beige adipocyte formation, and increased energy expenditure. The resulting catabolism of adipose leads to detrimental sequelae such as fatty liver, increased risk of infections, sepsis, and even death. While the phenomenon of pathological white adipose tissue (WAT) browning is well-documented in cachexia and burn models, the molecular mechanisms are essentially unknown. Here, we report that adipose triglyceride lipase (ATGL) plays a central role in burn-induced WAT dysfunction and systemic outcomes. Targeting adipose-specific ATGL in a murine (AKO) model resulted in diminished browning, decreased circulating fatty acids, and mitigation of burn-induced hepatomegaly. To assess the clinical applicability of targeting ATGL, we demonstrate that the selective ATGL inhibitor atglistatin mimics the AKO results, suggesting a path forward for improving patient outcomes.


Assuntos
Aciltransferases/fisiologia , Adipócitos Bege/metabolismo , Tecido Adiposo Branco/metabolismo , Queimaduras/complicações , Metabolismo Energético , Hepatomegalia/prevenção & controle , Lipólise , Adipócitos Bege/patologia , Tecido Adiposo Branco/patologia , Animais , Hepatomegalia/etiologia , Hepatomegalia/metabolismo , Hepatomegalia/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
8.
FASEB J ; 35(5): e21596, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33871073

RESUMO

Severe burns remain a leading cause of death and disability worldwide. Despite advances in patient care, the excessive and uncontrolled hypermetabolic stress response induced by this trauma inevitably affects every organ system causing substantial morbidity and mortality. Recent evidence suggests interleukin-6 (IL-6) is a major culprit underlying post-burn hypermetabolism. Indeed, genetic deletion of IL-6 alleviates various complications associated with poor clinical outcomes including the adverse remodeling of adipose tissue, cachexia and hepatic steatosis. Thus, pharmacological blockade of IL-6 may be a more favorable treatment option to fully restore metabolic function after injury. To test this, we investigated the safety and effectiveness of blocking IL-6 for post-burn hypermetabolism using a validated anti-IL-6 monoclonal antibody (mAb) in our experimental murine model. Here, we show daily anti-IL-6 mAb administration protects against burn-induced weight loss (P < .0001) without any adverse effect on mortality. At the organ level, post-burn treatment with the IL-6 blocker suppressed the thermogenic activation of adipose tissue (P < .01) and its associated wasting (P < .05). The reduction of browning-induced lipolysis (P < .0001) indirectly decreased hepatic lipotoxicity (P < .01) which improved liver dysfunction (P < .05). Importantly, the beneficial effects of this anti-IL-6 agent extended to the skin, reflected by the decrease in excessive collagen deposition (P < .001) and genes involved in pathologic fibrosis and scarring (P < .05). Together, our results indicate that post-burn IL-6 blockade leads to significant improvements in systemic hypermetabolism by inhibiting pathological alterations in key immunometabolic organs. These findings support the therapeutic potential of anti-IL-6 interventions to improve care, quality of life, and survival in burned patients.


Assuntos
Tecido Adiposo/efeitos dos fármacos , Anticorpos Monoclonais/farmacologia , Queimaduras/complicações , Fibrose/tratamento farmacológico , Interleucina-6/antagonistas & inibidores , Doenças Metabólicas/tratamento farmacológico , Animais , Fibrose/etiologia , Fibrose/patologia , Lipólise , Masculino , Doenças Metabólicas/etiologia , Doenças Metabólicas/patologia , Camundongos , Camundongos Endogâmicos C57BL
10.
Shock ; 56(5): 744-754, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-33534398

RESUMO

ABSTRACT: Severe burns are characterized by the magnitude and duration of the hypermetabolic response thereafter, and demarcated by the loss of lean body mass and catabolism of fat stores. The aim of the present study was to delineate the temporal and location-specific physiological changes to adipose depots and downstream consequences post-burn in a murine model of thermal injury. C57BL/6 mice were subjected to a 30% total body surface area burn and body mass, food intake, and tissue mass were monitored for various time points up until 60 days postinjury. Mitochondrial respirometry was performed using a Seahorse XF96 analyzer. Lipolytic markers and browning markers were analyzed via Western blotting and histology. A severe burn results in a futile cycle of lipolysis and white adipose tissue (WAT) browning, the sequelae of which include fat catabolism, hepatomegaly, and loss of body mass despite increased food intake. A dynamic remodeling of epididymal WAT was observed with acute and chronic increases in lipolysis. Moreover, we demonstrate that pathological browning of inguinal WAT persists up to 60 days post-burn, highlighting the magnitude of the ß-adrenergic response to thermal injury. Our data suggests that adipose depots have a heterogeneous response to burns and that therapeutic interventions targeting these physiological changes can improve outcomes. These data may also have implications for treating catabolic conditions such as cancer cachexia as well as developing treatments for obesity and type II diabetes.


Assuntos
Tecido Adiposo/fisiopatologia , Queimaduras/fisiopatologia , Animais , Escala de Gravidade do Ferimento , Camundongos , Camundongos Endogâmicos C57BL
11.
Endocrinology ; 161(9)2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32790834

RESUMO

Inflammasomes are multiprotein complexes that respond to pathogen or host associated damage markers, leading to caspase-1 maturation and processing of pro-inflammatory cytokines. Initially, inflammasomes were implicated primarily in inflammatory and infectious conditions. However, increasing evidence demonstrates broader roles beyond inflammation, including regulation of adipose tissue metabolism after burns. Here, we conducted a search for articles on PubMed, Web of Science, Embase, Scopus, and UpToDate with applied search strategies including a combination of "burns," "trauma," "(NLRP3) inflammasome," "metabolic conditions," "white adipose tissue," "macrophages," "browning," and "lipolysis" and included papers from 2000 to 2020. We discuss unexpected roles for NLRP3, the most characterized inflammasome to date, as a key metabolic driver in a variety of conditions. In particular, we highlight the function of NLRP3 inflammasome in burn trauma, which is characterized by both hyperinflammation and hypermetabolism. We identify a critical part for NLRP3 activation in macrophage dynamics and delineate a novel role in postburn white adipose tissue remodeling, a pathological response associated with hypermetabolism and poor clinical outcomes. Mechanistically, how inflammation and inflammasome activation is linked to postburn hypermetabolism is a novel concept to contemplate, and herein we provide evidence of an immunometabolic crosstalk between adipocytes and infiltrating macrophages.


Assuntos
Queimaduras/complicações , Inflamassomos/fisiologia , Inflamação/etiologia , Transtornos do Metabolismo dos Lipídeos/etiologia , Metabolismo/fisiologia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Animais , Queimaduras/metabolismo , Humanos , Inflamassomos/metabolismo , Inflamação/imunologia , Inflamação/metabolismo , Transtornos do Metabolismo dos Lipídeos/imunologia , Transtornos do Metabolismo dos Lipídeos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo
12.
JCI Insight ; 5(17)2020 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-32750036

RESUMO

One of the most significant adverse postburn responses is abnormal scar formation, such as keloids. Despite its prolificacy, the underlying pathophysiology of keloid development is unknown. We recently demonstrated that NLRP3 inflammasome, the master regulator of inflammatory and metabolic responses (e.g., aerobic glycolysis), is essential for physiological wound healing. Therefore, burn patients who develop keloids may exhibit altered immunometabolic responses at the site of injury, which interferes with normal healing and portends keloid development. Here, we confirmed keloid NLRP3 activation (cleaved caspase-1 [P < 0.05], IL-1ß [P < 0.05], IL-18 [P < 0.01]) and upregulation in Glut1 (P < 0.001) and glycolytic enzymes. Burn skin similarly displayed enhanced glycolysis and Glut1 expression (P < 0.01). However, Glut1 was significantly higher in keloid compared with nonkeloid burn patients (>2 SD above mean). Targeting aberrant glucose metabolism with shikonin, a pyruvate kinase M2 inhibitor, dampened NLRP3-mediated inflammation (cleaved caspase-1 [P < 0.05], IL-1ß [P < 0.01]) and improved healing in vivo. In summary, burn skin exhibited evidence of Warburg-like metabolism, similar to keloids. Targeting this altered metabolism could change the trajectory toward normal scarring, indicating the clinical possibility of shikonin for abnormal scar prevention.


Assuntos
Queimaduras/complicações , Glicólise , Inflamação/prevenção & controle , Queloide/prevenção & controle , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Pele/efeitos dos fármacos , Cicatrização , Adulto , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Estudos de Casos e Controles , Feminino , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Humanos , Inflamassomos , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Mediadores da Inflamação , Queloide/etiologia , Queloide/metabolismo , Queloide/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Naftoquinonas/farmacologia , Piruvato Quinase/antagonistas & inibidores
13.
J Cell Mol Med ; 24(17): 9764-9773, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32810382

RESUMO

The endoplasmic reticulum (ER) adapts to stress by activating a signalling cascade known as the ER stress response. While ER stress signalling is a central component of the cellular defence against environmental insult, persistent activation is thought to contribute to the progression of various metabolic complications via loss of protein function and cell death. Despite its importance however, whether and how ER stress impacts morbidity and mortality in conditions of hypermetabolism remain unclear. In this study, we discovered that chronic ER stress response plays a role in mediating adverse outcomes that occur after major trauma. Using a murine model of thermal injury, we show that induction of ER stress with Tunicamycin not only increased mortality but also resulted in hepatic damage and hepatic steatosis. Importantly, post-burn treatment with chaperone ER stress inhibitors attenuated hepatic ER stress and improved organ function following injury. Our study identifies ER stress as a potential hub of the signalling network affecting multiple aspects of metabolism after major trauma and as a novel potential molecular target to improve the clinical outcomes of severely burned patients.


Assuntos
Estresse do Retículo Endoplasmático/genética , Hepatopatias/genética , Fígado/metabolismo , Ferimentos e Lesões/genética , Animais , Retículo Endoplasmático/genética , Retículo Endoplasmático/patologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/patologia , Humanos , Fígado/patologia , Hepatopatias/mortalidade , Hepatopatias/patologia , Camundongos , Transdução de Sinais/genética , Ferimentos e Lesões/mortalidade , Ferimentos e Lesões/patologia
14.
Shock ; 53(2): 137-145, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31425403

RESUMO

Extensive burn injuries promote an increase in the lipolysis of white adipose tissue (WAT), a complication that enhances postburn hypermetabolism contributing to hyperlipidemia and hepatic steatosis. The systemic increase of free fatty acids (FFAs) due to burn-induced lipolysis and subsequent organ fatty infiltration may culminate in multiple organ dysfunction and, ultimately, death. Thus, reducing WAT lipolysis to diminish the mobilization of FFAs may render an effective means to improve outcomes postburn. Here, we investigated the metabolic effects of Acipimox, a clinically approved drug that suppresses lipolysis via inhibition of hormone-sensitive lipase (HSL). Using a murine model of thermal injury, we show that specific inhibition of HSL with Acipimox effectively suppresses burn-induced lipolysis in the inguinal WAT leading to lower levels of circulating FFAs at 7 days postburn (P < 0.05). The FFA substrate shortage indirectly repressed the thermogenic activation of adipose tissue after injury, reflected by the decrease in protein expression of key browning markers, UCP-1 (P < 0.001) and PGC-1α (P < 0.01). Importantly, reduction of FFA mobilization by Acipimox significantly decreased liver weight and intracellular fat accumulation (P < 0.05), suggesting that it may also improve organ function postburn. Our data validate the pharmacological inhibition of lipolysis as a potentially powerful therapeutic strategy to counteract the detrimental metabolic effects induced by burn.


Assuntos
Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/metabolismo , Lipólise/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Pirazinas/farmacologia , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Animais , Western Blotting , Queimaduras/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Imuno-Histoquímica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Esterol Esterase/metabolismo , Redução de Peso/efeitos dos fármacos
15.
Transl Res ; 217: 47-60, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31843468

RESUMO

Survival of burn patients is contingent on effective wound healing, a complex process that requires coordinated responses of myeloid cells and inflammatory pathways. NLRP3, which serves as a platform for secretion of proinflammatory cytokines, is implicated as a central regulator of wound healing. However, its role during the acute dermal and epidermal regeneration in the context of burns is unknown. Wild-type (WT) and NLRP3-/- mice were exposed to a 30% TBSA scald burn. Gene expression was conducted via real-time polymerase chain reaction. Trichrome staining was used to assess collagen deposition and granulation tissue formation. F4/80 immunostaining compared macrophage infiltration. Flow cytometric analysis was used to characterize skin macrophage distribution and profile. NLRP3, IL1ß and IL18 expression was upregulated in skin after burn, and these changes were nonexistent in NLRP3-/-. NLRP3-/- had decreased expression of proinflammatory cytokines, chemokines, inflammatory markers, and growth factors at 3 days (P < 0.05). NLRP3-/- burn skin demonstrated significantly less macrophage infiltration and higher expression of anti-inflammatory markers Arg1 and Fizz1 (P < 0.05) compared to WT. Trichrome staining showed decreased collagen deposition compared to WT. We show that NLRP3 is protective in burn wound healing, primarily through production of inflammatory mediators, macrophage recruitment, and polarization to a proinflammatory phenotype. Our findings highlight a central role of NLRP3 in wound healing through regulation of inflammation and macrophage polarization after burns.


Assuntos
Queimaduras/fisiopatologia , Inflamassomos/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/fisiologia , Cicatrização/fisiologia , Animais , Citocinas/análise , Feminino , Glibureto/farmacologia , Humanos , Macrófagos/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Cicatrização/efeitos dos fármacos
16.
Am J Physiol Endocrinol Metab ; 317(5): E751-E759, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31453709

RESUMO

A hallmark after burn is the stress and inflammatory-induced hypermetabolic response. Recently, we and others found that browning of white adipose tissue (WAT) is a critical component of this complex detrimental response. Although browning and inflammation have been independently delineated to occur after injury, their interaction is currently not well defined. One of the master regulators of inflammation and adipose tissue remodeling after burns is nucleotide-binding and oligomerization domain, leucine rich repeat and pyrin domain containing 3 (NLRP3) inflammasome. The aim of this this study was to determine whether NLRP3 modulates and activates WAT browning after burn. To obtain molecular and mechanistic insights, we used an NLRP3 knockout (NLRP3-/-) murine burn model. We demonstrated that genetic deletion of NLRP3 promoted persistent and augmented browning in adipocytes, evidenced by increased gene expression of peroxisome proliferator-activated receptor γ and CIDEA at 3 days (5.74 vs. 0.29, P < 0.05; 26.0 vs. 0.71, P < 0.05) and uncoupling protein 1 (UCP1) and PGC1α at 7 days (7,406 vs. 3,894, P < 0.05; 20.6 vs. 2.52, P < 0.01) and enhanced UCP1 staining and multilocularity. Additionally, the main regulator of postburn WAT browning, IL-6, was elevated in the plasma acutely after burn in NLRP3-/- compared with wild-type counterparts (478.9 vs. 67.1 pg/mL, P < 0.05 at 3 days). These results suggest that NLRP3 has antibrowning effects and that blocking NLRP3 increases thermogenesis and augments browning via increased levels of IL-6. Our findings provide insights into targeting innate inflammatory systems for regulation of adaptive thermogenesis, a critical response after burns and other hypermetabolic conditions.


Assuntos
Tecido Adiposo Branco/fisiopatologia , Queimaduras/fisiopatologia , Inflamassomos/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Adulto , Animais , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Feminino , Humanos , Interleucina-6/biossíntese , Interleucina-6/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , PPAR gama/genética , PPAR gama/metabolismo , Termogênese , Proteína Desacopladora 1/genética , Proteína Desacopladora 1/metabolismo
17.
Expert Rev Anti Infect Ther ; 17(8): 607-619, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31353976

RESUMO

Introduction: Despite modern advances, the primary cause of death after burns remains infection and sepsis. A key factor in determining outcomes is colonization with multi-drug resistant (MDR) organisms. Infections secondary to MDR organisms are challenging due to lack of adequate antibiotic treatment, subsequently prolonging hospital stay and increasing risk of adverse outcomes. Areas covered: This review highlights the most frequent organisms colonizing burn wounds as well as the most common MDR bacterial infections. Additionally, we discuss different treatment modalities and MDR infection prevention strategies as their appropriate management would minimize morbidity and mortality in this population. We conducted a search for articles on PubMed, Web of Science, Embase, Cochrane, Scopus and UpToDate with applied search strategies including a combination of: "burns, 'thermal injury,' 'infections,' 'sepsis,' 'drug resistance,' and 'antimicrobials.' Expert opinion: Management and prevention of MDR infections in burns is an ongoing challenge. We highlight the importance of preventative over therapeutic strategies, which are easy to implement and cost-effective. Additionally, targeted, limited use of antimicrobials can be beneficial in burn patients. A promising future area of investigation within this field is post-trauma microbiome profiling. Currently, the best treatment strategy for MDR in burn patients is prevention.


Assuntos
Anti-Infecciosos/administração & dosagem , Queimaduras/complicações , Infecção dos Ferimentos/epidemiologia , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/epidemiologia , Infecções Bacterianas/microbiologia , Resistência Microbiana a Medicamentos , Farmacorresistência Bacteriana Múltipla , Humanos , Sepse/tratamento farmacológico , Sepse/epidemiologia , Sepse/microbiologia , Infecção dos Ferimentos/tratamento farmacológico , Infecção dos Ferimentos/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...